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Abstract For any molecular structure and under arbitrarily varied theoretical com-
putational levels, the concept of atomic population, initially proposed by Mulliken and
now present with many variants in quantum chemical studies, can be used to obtain a
set of polarized atomic charges, as it is well known. However, it has not been studied
yet how atomic populations can be also the basis for constructing discrete probability
distributions in the form of shape atomic population distributions. This kind of discrete
molecular probability distributions can be easily used to perform numerical compar-
isons between various theoretical levels employed (varying computational methods
and basis sets), among diverse molecular isomers or amid molecular states. Distance
dissimilarity and cosine similarity indices or Shannon entropy can be employed to
compare the pairs of atomic populations and at the same time to obtain new molecular
descriptor parameters.

Keywords Atomic populations · Mulliken atomic populations ·
Global atomic populations · Shape populations · Comparison of atomic populations ·
Euclidian and Minkowski distances · Cosine similarity index · Shannon entropy ·
Rao distribution comparison

1 Introduction

In some recent studies [1–3] performed at our laboratory, about molecular density
functions and electrostatic potentials under the atomic shell approximation (ASA)
[4–14], it has been proven that good quality maps of these molecular quantum func-
tions can be obtained without effort for a large variety of structures. These examples
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permit to consider ASA functions reliable enough for quantum similarity calculations,
confirming the way as they have been employed for this purpose since several years
from now, see for example reference [15] for a modern application.

The present contribution is aimed to provide simple tests for studying the charac-
teristics of atomic populations, as such molecular parameter set, initiated by Mulliken
[16] long time ago, corresponds to one of the basic information sets needed to construct
reliable ASA density functions.

Because of all these considerations, the development of tools to assess population
differences appears of some importance. The present work tries to set up the basic
concepts which can be used in order to compare molecular atomic populations.

Using this line of thought in what follows there will be defined several new molecu-
lar parametric concepts related to atomic populations. Such new theoretical ideas, like
global atomic populations and shape atomic populations, have been not yet described,
as far the author knows.

1.1 Basic definitions

Given any molecule M , the possible attached atomic populations of any conceivable
origin will be denoted hereafter by the column vector:

∣
∣
∣QM

〉

=
{

QM
I |I = 1, νM

}

,

where νM is the number of atoms forming the molecule.
Independently of the computational origin of the vector elements collecting the

atomic populations and previously to any other consideration, it must be taken into
account a property concerning the atomic population vector, which will fulfill without
exception the equation:

〈∣
∣
∣QM

〉〉

=
∑

I∈M

QM
I = NM , (1)

where NM is the number of electrons of the molecule M .
Moreover, another capital property must hold universally in this field: the positive

definiteness, which has to be associated at the same time to all the elements of an
arbitrarily computed atomic population vector, attached in turn to any molecule M ,
that is:

∀M ∧ ∀I ∈ M : QM
I ∈ R+.

1.2 The atomic numbers vector

The two properties earlier mentioned will automatically be fulfilled, whenever one
constructs another vector of the same dimension as the previous one, but now contain-
ing the set of the positive definite atomic numbers, attached like the atomic populations
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to the atoms of the same molecule M : ∣
∣Z M

〉 = {

Z M
I |I = 1, NM

}

. Performing a com-
plete sum over the atomic numbers vector

∣
∣Z M

〉

it is obtained a related characteristic,
like the one described in Eq. (1):

〈∣
∣
∣Z M

〉〉

=
∑

I∈M

Z M
I = NM . (2)

The difference between Eqs. (1) and (2) though, consists in that one can look at the
last sum, as a composite scalar product, namely:

NM =
∑

A∈M

nM
A Z A, (3)

where now the sum in Eq. (3) runs over the different kinds of atoms of the molecule
M . Then, necessarily the set

{

nM
A

}

corresponds to the number of atoms of kind A
present into molecule M . Finally, now the set {Z A} contains the atomic numbers of
every atomic kind represented in M .

1.3 Global atomic populations

In a similar trivial way, the atomic populations can be summed up choosing the same
atom kind, say K ,within the complete population sum (1), yielding:

∑

K∈M

(
∑

I∈K

QM
K ;I

)

= NM , (4)

where now the molecule M population set, which can be ordered as a matrix:
{

QM
K ;I

∣
∣K = 1, nM

A ; I = 1, nM
K

}

∧ ∑

K∈M
nM

K = vM corresponds to the same values

as defined before, but reordered employing an extra index, which indicates the atomic
kind attached to a given population. The parameters

{

nM
K

}

as in Eq. (3), collect the
number of atoms for each different atomic kind present into the molecule M .

In this manner it is easy to see that one can define a global atomic population for
every atomic kind:

{

G M
K

}

, which can be defined as:

∀K ∈ M : G M
K =

∑

I∈K

QM
K ;I →

∑

K∈M

G M
K = NM . (5)

For example, in Benzene one has only two atomic kinds namely: {C,H} , also: nM
C =

nM
H = 6 ∧ νM = 12 ∧ NM = 42, and using Spartan program [17] under HF and

a 3-21G basis set, with computed Mulliken atomic populations up to two significant
figures, only two different atomic populations due to the high molecular symmetry are
present:

QC = 6.24 ∧ Q H = 0.76,
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then the global atomic populations are readily computed, being their sum the number
of electrons; the benzene situation can be resumed using the simple scheme:

GC = 6 · 6.24 = 37.44 ∧ G H = 6 · 0.76 = 4.56 → GC + G H = 42.

2 Shape atomic populations

When observing Eq. (1) (insisting on the fact that all the properties discussed here
will hold, whatever the origin of the atomic populations used), one cannot avoid the
temptation to define an obvious probability-like distribution, just dividing every atomic
population value by the number of electrons in the molecule:

∑

I∈M

(

N−1
M

)

QM
I =

∑

I∈M

π M
I = 1. (6)

The set
∣
∣π M

〉 = {

π M
I |I = 1, νM

}

which can be associated to shape atomic popula-

tions as defined and used in Eq. (6): ∀I = 1, vM : π M
I =

(

N−1
M

)

QM
I , behave as a

discrete probability distribution, with an associated cardinality equal to the number
of atoms νM present in the molecule M . Over the shape atomic populations it can be
also used the equivalent reordering employed in Eq. (4), collecting atoms of the same
kind and summing up reaching for a global quantity. For instance, it can be written:

∀K = 1, nM
A ∈ M : π M

K =
∑

I∈K

π M
K I .

Using the data of the previous benzene HF 3-21G calculation and the attached global
atom populations as computed beforehand, one can easily obtain in this case the global
shape atomic populations as:

πC = 0.89 ∧ πH = 0.11.

Equation (2) can be transformed using the same ideas into such a probability distrib-
ution too:

∑

I∈M

(

N−1
M

)

Z M
I =

∑

I∈M

θ M
I = 1,

With such a definition, the set of bulk shape populations, which can be easily written

as:
∣
∣θ M

〉 =
{

θ M
I =

(

N−1
M

)

Z I |I = 1, vM

}

, also becomes a probability distribution.

Of course, this distribution can be rearranged by classes, composed in turn with as
many equal elements, as the number of atomic kinds present into the molecule.

In the benzene case there will be 6 bulk shape atomic population numbers with the
same value: θC = 1/7, corresponding to the carbon atoms and six more: θH = 1/42,
which can be associated to the hydrogen atoms.
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3 Comparison of two shape populations

Once realized the easy transformation of atomic populations into shape atomic popu-
lation distributions, it can be envisaged the possibility to compare two different mole-
cular calculations possessing a coherent number of atoms. In a first instance, they
can be compared with the usual mathematical tools furnished by simple geometrical
considerations.

There are already well-known dissimilarity and similarity indices which can be
employed for this task, and have been used from the early times of quantum similarity
[18], and which continue to be studied in modern times, see for example references
[19–22]. In fact, the main computational possibilities can be primarily organized into
distances and cosines, as it will be explained below. Other more sophisticated statistical
comparison procedures will be briefly discussed at the end.

a. Euclidian distance-like measures

In any case, one can compare a distribution issued from an atomic population,
obtained according to some criterion, with the bulk shape atomic populations; that is,
a squared Euclidian distance can be set up:

�(2) =
∑

I∈M

(

θ M
I − π M

I

)2
. (7)

The positive definite scalar �(2) can be used as a measure of how far can be considered
shape population distributions from the non-polarized molecular frame.

a.1 Naïve examples

1) When trying to obtain the difference between the previous benzene HF 3-21G
calculation and the bulk molecule distribution, which can be described by means
of: θC = 6

7 = 0.86 ∧ θH = 1
7 = 0.14. As one can easily obtain in this case

the global atomic shape populations as shown before, then the squared distance
corresponds to: �(2) = 1.8 × 10−3.

2) Taking the benzene molecule as an example again, within a HF calculation but
now under an extended 6311+G** basis set, one obtains Mulliken populations
rounded up to two decimals, with values: QC = 6.13 ∧ Q H = 0.87, which
imply global populations in benzene like: GC = 36.8 ∧ G H = 4.98. These
values yield a shape atomic population probability distribution, which can be
written as: πC = 0.88 ∧ πH = 0.12. This distribution can be compared with the
bulk distribution, as described before in the first example. The squared distance
(7), in this large basis set benzene computation can be easily obtained as a quite
small quantity �(2) = 8 × 10−4, a value coherent with the approach to the null
polarization of benzene one can apparently expect as the basis set grows.

3) The difference obtained between both basis sets and the bulk molecular atomic
numbers is small, but larger in the smaller basis set than in the larger one.

4) The previously obtained figures can be enhanced taking the square root of expres-
sion (7) and transforming them into Euclidian distances. For the 3-21G case it is
obtained: � = 0.042 and for the large basis set one finds: � = 0.028.
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The simple mathematical structure described so far for comparison, can undoubtedly
generate an order on the quite large different kinds of atomic populations sets, which
can be computed within the same molecule.

a.2 Using distances between two different shape populations

For example: populations defined according to two criteria over the same molecule
can be compared, when obtained with the same basis set, or alternatively, values of
the same kind of shape populations but obtained in diverse basis sets can be also
compared.

Even the effect of population distortions provoked by bond rotations, stretching and
bending, or electronic excitations, even ionization (because shape populations sum the
unit), diverse isomers (for instance, in absence of chiral fields two enantiomers have the
same shape populations and the measure �(2) will appear the same when exchanging
R and S isomers distributions) can be assessed and compared with some basic or
reference shape population in this distance-like way.

In any case Eq. (7), can be also generalized and written like:

�
(2)
ab =

∑

I∈M

(
aπ M

I − bπ M
I

)2
(8)

where the supraindices written on the left side of the shape populations, denote dif-
ferent shape populations for the same molecule, which can be associated to different
theoretical levels or to diverse conformers or isomers, as suggested above.

a.3 Trivial examples

For example, the previously computed benzene 3-21G Mulliken shape population
can be compared with the large basis set one. The squared distance between the
two HF basis set calculation levels corresponds to an irrelevant quadratic difference:
�

(2)
ab = 2 × 10−4, associated to an Euclidian distance of: �ab = 0.014.
As another possible example, it will be instructive to compare the large basis set

HF calculation with the same basis set within B3LYP DFT calculation, which yields
Mulliken populations like: QC = 6.13 ∧ Q H = 0.87. In this case the distance (8)
will be easily calculated when compared with the HF calculation of the same accuracy
yielding: �

(2)
ab = �ab = 0. Thus, apparently, from this point of view HF and DFT at

such computation level provide the same population information.

a.4 Comparisons between borazine and benzene

In order to provide another simple example, employing the previously described
techniques, one can try to evaluate the numerical differences between two isoelec-
tronic molecules possessing coherent number of atoms, like benzene and borazine,
for instance. The benzene molecule has been already described from the point of view
of shape atomic populations; the borazine, within the same computational character-
istics (HF under 3-21G basis set) provide four atomic kinds with different Mulliken
populations:

Q B = 4.25 ∧ QN = 8.01 ∧ Q H(N ) = 0.66 ∧ Q H(B) = 1.07.
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The distance-like measure between borazine and benzene can be constructed as:
�

(2)
ab = 0.037.

Comparison of borazine with bulk borazine shape distribution will show a smaller
distance, comparable to the ones obtained in the benzene case: �

(2)
0a = 9 × 10−3 →

�0a = 0,095.
In these figures one can grasp the whole degree of polarization and the differ-

ence between both isoelectronic molecules, which is larger than the distances of both
structures to their bulk shape populations.

a.5 Borazine in a 6311+G** basis set

Borazine under a HF calculation with the same large basis already set used in benzene
too, provides the following Mulliken atomic populations:

Q B = 4.59 ∧ QN = 7.66 ∧ Q H(N ) = 0.70 ∧ Q H(B) = 1.05

which deliver global atomic populations like:

G B = 13.77 ∧ G N = 22.98 ∧ G H(N ) = 2.1 ∧ G H(B) = 3.15

and those permit to compute the shape atomic population distribution as:

πB = 0.33 ∧ πN = 0.55 ∧ πH(N ) = 0.05 ∧ πH(B) = 0.075.

It can be instructive to compare this distribution with the bulk one, which yields:
�

(2)
0a = 3.5 × 10−3 → � = 0.059
This seems to indicate that, at the same time as has been obtained with benzene,

atomic populations in larger basis sets tend to be nearest to the bulk non polarized
distribution than the smaller basis set results.

Comparison with the HF 3-21G basis set borazine calculation provides:

�
(2)
ab = 1.23 × 10−3 → �ab = 0,035

Indicating not only the obvious result that borazine is more polarized than benzene,
but also that the difference between both small and large basis sets is also larger than
in benzene.

b. Minkowski-like distances

Instead of using Euclidian distances one can also employ Minkowski absolute value
sums. Then, Eqs. (7) and (8) will have their Minkowski counterparts redefined as:

M =
∑

I∈M

∣
∣
∣θ

M
I − π M

I

∣
∣
∣

Which for the benzene molecule yields for the 3-21G calculation: M = 0.069 and for
the large basis set: M = 0.037.
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In order to compare two different calculations one can define the Minkowski coun-
terpart of Eq. (8) as:

Mab =
∑

I∈M

∣
∣
∣
aπ M

I −b π M
I

∣
∣
∣.

For example, comparing both benzene HF calculations at the two basis set levels
one obtains: Mab = 0.031. Also the borazine pair of calculations under the same
framework, compared as in benzene, provides a greater value: Mab = 0.054.

It can be seen how the ordering encountered in the previous Euclidian example is
preserved in the Minkowski framework. Of course, the comparison of the HF and DFT
calculation in the same basis set 6311+G** in benzene will yield a null Minkowski
distance too. In borazine DFT Mulliken atomic populations yield:

Q B = 4.71 ∧ QN = 7.52 ∧ Q H(N ) = 0.723 ∧ Q H(B) = 1.050.

Comparison of HF and DFT B3LYB under a large basis set by means of Minkowski
distance yields: Mab = 0.02, a relevant difference.

c. Cosine-like similarity measures

The comparison possibilities associated to distance-like measures as studied above
are appealing, but there is not only such a possible comparison type. Other kinds of
measures can be designed, among others, a cosine-like similarity measure, which can
be obviously related to the Carbó index of QSM [18]. It is easy to write the following
shape atomic population vector definitions:

∣
∣
∣
aπ M

〉

=
{

aπ M
I

}

∧
∣
∣
∣
bπ M

〉

=
{

bπ M
I

}

.

In order to construct this difference measure in an elegant way, the needed norms and
scalar product of these shape atomic population vectors can be written in the following
form:
〈
aπ M

∣
∣
∣

aπ M
〉

=χaa ∧
〈
bπ M

∣
∣
∣

bπ M
〉

=χbb ∧
〈
aπ M

∣
∣
∣

bπ M
〉

=χab =χba =
〈
bπ M

∣
∣
∣

aπ M
〉

.

Therefore it is straightforward to define the cosine-like measure:

rab = χab

(χaaχbb)
1
2

∈ [0, 1] ,

or its trivial squared value. For example, comparison of the two benzene HF calcula-
tions under the different basis sets yields:

χaa = 0.80 ∧ χbb = 0.79 ∧ χab = 0.78 → r2
ab = 0.96

Consequently, in this manner one can see that it exists at least two complementary ways
to assess the differences between shape populations, defined upon a given molecular
structure and the possible isomers, or between molecules of the same number of atoms.
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c.1 A benzene and borazine example

In this example it has been employed the cosine-like similarity measure invariant
property upon homothetic scaling of all the involved vectors, see for example reference
[22] for more details. Due to this property it is irrelevant in the cosine case to use
directly atomic populations or alternatively shape atomic populations.

For instance, the cosine-like measure between both benzene–borazine molecules
can be easily obtained as:

〈a|a〉 = 237.10 ∧ 〈b|b〉 = 251.41 ∧ 〈a|b〉 = 233.45 → rab = 0.956.

Both molecules can be also compared in turn with the bulk shape populations provid-
ing, for benzene a cosine-like index:

〈0a|0a〉 = 222 ∧ 〈0a|a〉 = 229.2 → r0aa = 0.999;

while, borazine when compared with the bulk distribution it is obtained:

〈0b|0b〉 = 228 ∧ 〈0b|b〉 = 237.15 → r0bb = 0.991.

These simple examples can be sufficient to grasp the power of such cosine-like com-
parison procedures. One can conclude that benzene is almost equal to its bulk shape
distribution, while borazine is slightly different, but both benzene–borazine shape
distributions are quite different between them.

4 Shannon information content and other distance possibilities

This kind of proposed study will be not complete, whenever skipping even a few words
about the possibility to use some other techniques for comparison purposes, and index
generation by means of atomic populations.

It can be also obtained some numerical insight, for instance, computing the informa-
tion content of a shape atomic population probability distribution. Indeed, any vector
attached to a molecular distribution of this kind, like:

∣
∣aπ M

〉 = {
aπ M

I

}

, can be handled
into the well-known Shannon entropy formula:

S = −
∑

I∈M

aπ M
I log2

(
aπ M

I

)

.

For the two benzene HF computational levels studied so far, one can easily write, using
natural logarithms, thus giving in nets the entropy:

1) 3-21G: S = 0.35
2) 6311+G**: S = 0.37
3) Bulk: S = 0.41

While for borazine one can write:

1) 3-21G: S = 1.02
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2) 6311+G**: S = 1.04
3) Bulk: S = 0.99

It is interesting to note here that in benzene the bulk distribution appears as an
upper limit value of the entropy with respect to basis set variation. In borazine does
not occur the same, the bulk entropy value looks like a lower limit, which might be
reached from the large basis set down to the smaller one.

At the same time, comparisons involving more sophisticated distance definitions,
precisely presented several years ago [23–26] to compare probability distributions.
The generalization due to Rao can be also employed [23], but introducing them here
will destroy the simplicity sought for this first approach to shape atomic population
definitions and comparisons.

5 Conclusions

In molecules possessing a coherent number of atoms, upon defining shape atomic
populations as some kind of discrete probability distributions, it is a simple matter to
describe several possibilities under which the diverse atomic populations can be com-
pared. Distances, cosines, Shannon entropy and Rao probability distribution distances
can be easily employed for this purpose. In all the studied cases, not only the defined
measures can be used for comparison, but as a source of new molecular indices as well.
The interesting thing above all consists in that, in general, the population comparisons
here described can be done without any great computing effort.
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